¹H-NMR Spectroscopic Studies on the Ruthenocene and Its Salts

Masanobu WATANABE* and Hirotoshi SANO

Department of Chemistry, Faculty of Science, Tokyo Metropolitan

University, Fukasawa, Setagaya, Tokyo 158

Temperature dependence of $^1\mathrm{H-NMR}$ spectra of a system containing ruthenocene and ruthenoceniumX $^+\mathrm{Y}^-$ salts (X; Cl, Br, I and Y; PF6, BF4, I3) in 1:1 molar ratio indicates the presence of intermolecular electron transfer between the ruthenocene and ruthenocenium species associated with an exchange of X atoms between the Ru $^{\mathrm{II}}\mathrm{Cp}_2$ molecules and Ru $^{\mathrm{IV}}\mathrm{Cp}_2\mathrm{x}^+$ cations.

Mixed-valence biruthenocenium $X^+PF_6^-$ (X; Cl, Br) salts expressed as $[Ru^{II}Cp(C_5H_4)(C_5H_4)CpRu^{IV}X]^+PF_6^-$ in a solid were prepared recently by oxidizing biruthenocene with FeX3 in a solution of HX-NH4PF6 (X; Cl, Br, respectively). 1-3) Although no temperature dependence of the 1H-NMR spectra is observed for ruthenocene and ruthenoceniumX+PF6- salts alone, remarkable temperature dependence of the ¹H-NMR spectra is found for the mixed-valence state of biruthenoceniumX⁺PF₆⁻ salts; i.e., a trapped valence state of biruthenocenium $X^+PF_6^-$ salts, $[Ru^{II}Cp(C_5H_4)(C_5H_4)CpRu^{IV}X]^+$, is observed at lower temperature and an averaged-valence state of the salts, expressed as $[Ru^{II}Cp(C_5H_4)(C_5H_4)CpRu^{IV}X]^{+} = [XRu^{IV}Cp(C_5H_4)(C_5H_4)CpRu^{II}]^{+}$ or $[Cp(C_5H_4)Ru^{III}-X-Ru^{III}(C_5H_4)Cp]^+$, is observed at higher temperature. 1,3) The fact suggests that there is some interaction between the ${
m Ru}^{{
m II}}({
m C}_5{
m H}_4){
m Cp}$ and $[XRu^{IV}(C_5H_4)Cp]^+$ moieties in the salts, while the question remains whether the interaction is ascribed to an intra- or intermolecular interaction. In order to clarify the question, the present studies were carried out on the mononuclear systems containing ruthenocene and ruthenoceniumX+Ysalts (X; Cl, Br, I and Y; PF_6 , BF_4 , I_3) in 1:1 molar ratio with 0.0001- $0.01 \text{ mol } dm^{-3} \text{ for each component.}$

RuthenoceniumX $^+$ PF $_6^-$ (X; Cl, Br) and related compounds were obtained by the method reported previously. 4) 1 H-NMR spectra were measured using a JEOL FX-200 spectrometer at 199.56 MHz, using TMS as a standard.

Figure 1 shows the temperature dependence of ¹H-NMR spectra of the ru-

thenocene/ruthenoceniumI $^{+}$ I $_{3}^{-}$ system in the mixed solvent of CD $_{3}$ CN and CDCl $_{3}$ (1:1), and the chemical shift ($^{\delta}$ H) values are listed in Table 1. Sharp two lines at 4.53 and 6.10 ppm are observed at 183 K. Based on the data of ruthenocene and ruthenoceniumI $^{+}$ I $_{3}^{-}$, the former value (4.53 ppm) is ascribed to that of ruthenocene and the latter (6.10 ppm) to that of ruthenocenium-I $^{+}$ I $_{3}^{-}$. The result suggests the absence of interaction between the ruthenocene and ruthenoceniumI $^{+}$ I $_{3}^{-}$ in the solution at 183 K.

Upon heating to 217 K the two peaks are broaden. The coalescence temperature (Tc) is found to be about 217 K. In a higher temperature than Tc, a sharp line at 5.35 ppm is observed (at 293 K). The value corresponds to the value (5.31 ppm) averaged for those of ruthenocene (4.52 ppm) and ruthenoceniumI $^{+}$ I $_{3}^{-}$ (6.10 ppm) at 298 K. The data suggest a rapid intermolectular electron transfer associated with an interchange in the bonding of I with Ru atoms between ruthenocene and ruthenoceniumI $^{+}$ I $_{3}^{-}$, to be expressed as Cp₂Ru * +Cp₂RuI $^{+}$ I $_{3}^{-}$ \rightleftharpoons Cp₂Ru * I $^{+}$ I $_{3}^{-}$ +Cp₂Ru. The formation of an intermediate dimer, such as [Cp₂Ru III --I--Ru^{III}Cp₂] $^{+}$ I $_{3}^{-}$ may not be ruled out either.

The life time (T) at Tc is estimated to be 1.44 ms using the following equation $\tau = 2^{1/2}\pi^{-1}\sigma^{-1}$, 5) where $\sigma(\text{Hz})$ is the difference in the chemical shifts of Cp-ring of the Cp₂Ru^{II} and [Cp₂Ru^{IV}I]⁺I₃⁻ (313.3 Hz). The value of ΔG^{\ddagger} at Tc is also estimated to be 40.8 \pm 0.3 kJ mol⁻¹ using the

Table 1. 1 H-Chemical shifts and activation parameters of ruthenocene/ruthenoceniumX $^{+}$ Y $^{-}$ systems and related compounds in mixed solvent of CD $_{3}$ CN and CDCl $_{3}$ (1:1)

Compound	Temp K	Chem. shift δ_{H}	t <u>Tc</u> &	ms k	G [‡] (TC) J mol	Ea kJ mol-1
Ruthenocene	298	4.52				
RuthenoceniumI ⁺ I ₃ ⁻	298	6.10				
RuthenoceniumI ⁺ PF ₆	298	6.08				
RuthenoceniumI+BF4-	298	6.06				
RuthenoceniumBr ⁺ PF ₆	298	6.00				
RuthenoceniumCl+PF6-	298	5.95				
Ruthenocene/RuthenoceniumI ⁺ I ₃ -	183	4.53	217	1.44	40.8	30.6
		6.10				
	293	5.35				
Ruthenocene/RuthenoceniumI ⁺ PF ₆ ⁻	183	4.52	228	1.43	42.9	31.5
		6.10				
	313	5.31				
Ruthenocene/RuthenoceniumI+BF4-	183	4.53	227	1.43	42.7	31.1
		6.11				
	313	5.36				
Ruthenocene/RuthenoceniumBr+PF6-		4.53	348	1.53	66.9	41.7
		6.01				
	273	4.54				
		6.01				
Ruthenocene/RuthenoceniumCl+PF6-	183	4.49	>>373	1.59	>>72.0	47.9
		5.91				
	373	4.55				
	2.3	5.97				

following equation, $\Delta G^{\dagger}(Tc)=2.303RTc(10.319+\log_T+\log_Tc)$ where R= 8.314 J mol⁻¹deg⁻¹.6) Activation energy (Ea) is obtained in the usual way from plots of ln κ versus T⁻¹. Good linear plots are obtained and Ea value is found to be 30.6 kJ mol⁻¹. Similar remarkable temperature dependence of the spectra is observed for ruthenocene/ruthenoceniumI⁺PF₆ and ruthenocene/ruthenoceniumI⁺BF₄ systems. The Tc, $\Delta G^{\dagger}(Tc)$, and Ea values of the systems are, however, a little larger than those of ruthenocene/ruthenoceniumI⁺I₃ system, as shown Table 1.

Figure 2 shows the temperature dependence of $^1\text{H-NMR}$ spectra of the ruthenocene/ruthenoceniumBr $^+\text{PF}_6^-$ system. Sharp two lines at 4.53 and 6.01 ppm are observed at 183-253 K, corresponding to ruthenocene and ruthenoceniumBr $^+\text{PF}_6^-$, respectively. Upon heating to 348 K (Tc) the peaks are broading. The Tc is much higher than that of ruthenocene/ruthenoceniumI $^+\text{Y}^-$ (Y; PF $_6$, BF $_4$ and I $_3$) systems. The values of τ (Tc), Δ G ‡ (Tc), and Ea are estimated to be 1.53 ms, 66.9, and 41.7 kJ mol $^{-1}$, respectively.



Fig. 1. ¹H-NMR spectra of ruthenocene/ruthenoceniumI⁺I₃ at indicated temperatures.

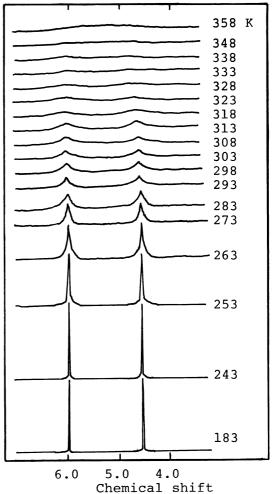
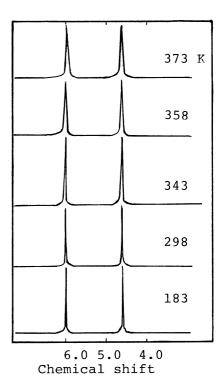



Fig. 2. ¹H-NMR spectra of ruthenocene/ruthenoceniumBr⁺PF₆ at indicated temperatures.

On the other hand, little temperature dependence (183-373 K) is observed in the spectrum of ruthenocene/ruthenoceniumCl+PF6 system, as found in Fig. 3, although slightly broading lines are observed at higher temperatures (343-373 K). The value of Tc for the ruthenocene/ruthenoceniumCl+PF6 system is expected to be too high to be observed. The $\Delta G^{\dagger}(Tc)$ value are estimated to be much larger than 72.0 kJ mol⁻¹.

All the results obtained in the present studies lead us to the conclusion that there is some intermolecular electron transfer associated with an exchange of the X atoms between the ruthenocene and ruthenoceniumX+ species as indicated in $^*Cp_2Ru^{II}+Cp_2Ru^{IV}X^+ = ^*Cp_2Ru^{IV}X^++Cp_2Ru^{II}$. The exchange rate increases in the order of ruthenocene/ruthenoceniumI⁺Y⁻> ruthenocene/ruthenoceniumBr⁺PF₆⁻> ruthenocene/ruthenocenium-Cl⁺PF₆ systems. The order is quite different from that found for biruthenocenium X^+Y^- systems Fig. 3. ¹H-NMR spectra of in which the rate decreases in the order of bi- ruthenocene/ruthenocenium- $\verb"ruthenoceniumI" +> \verb"biruthenoceniumBr" +> \verb"birutheno-" Cl"+PF_6" - at indicated$ ceniumCl $^+$ salts. 1,3) Moreover $\triangle G^{\dagger}(Tc)$ and Ea values are found to be 42.7 and 29.2 kJ mol⁻¹

temperatures.

for the biruthenocenium $\mathrm{Br}^{+}\mathrm{PF}_{6}^{-}$ system and to be 41.8 and 28.1 kJ mol^{-1} for the biruthenoceniumCl+PF6 system, respectively, which are much lower than the values of the ruthenocene/ruthenoceniumX⁺PF₆ (X; Br, Cl) systems. reason for the difference between the biruthenoceniumX+PF6 and the ruthenocene/ruthenoceniumX⁺PF₆⁻ systems may be ascribed to different mechanisms of the intra- and intermolecular electron transfer associated with the exchange of the X atom between ruthenocene- and ruthenoceniumX+ -type in solution, respectively.

- 1) M. Watanabe, H. Sano, and I. Motoyama, Chem. Lett., 1990, 1667.
- 2) M. Watanabe, S. Kawata, H. Sano, and I. Motoyama, J. Organomet. Chem., 399, 301 (1990).
 3) M. Watanabe, A. Kubo, S. Kawata, H. Sano, and I. Motoyama, Bull.
- Chem. Soc. Jpn., Under submitted.
 4) T. P. Smith, K. S. Kwan, H. Taube, A. Bino, and S. Cohen, Inorg. Chem.,
- 23, 1943 (1984).

 5) H. S.Gutowsky and C. H. Holm, J. Chem. Phys., 25, 1228, (1956).

 6) S. Glastone, K. J. Laidler, and H. Eyring, "The Theory of Rate Process," McGraw-Hill Book Co., Inc., London (1941), Chap.l. (Received November 13, 1990)